A CONVENIENT METHOD FOR THE SYNTHESIS OF α -ALKOXYCARBOXAMIDE DERIVATIVES

Teruaki MUKAIYAMA, Kenzo WATANABE*, and Manzo SHIONO
Department of Chemistry, Faculty of Science, The University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113

It was established that, in the presence of TiCl_4 , isocyanides react with acetals to afford $\alpha\text{-alkoxycarboxamide}$ derivatives in good yields.

In the previous papers, $^{1a-d)}$ it was shown that acetals react with various nucleophiles such as silyl enol ethers, enol acetates and so on to afford the condensation products in good yields by the promotion of $^{TiCl}_4$. On the other hand, isocyanides, $^{2a)}$ stable divalent carbon compounds, are widely utilized as powerful nucleophiles as well as electrophiles. Therefore, many reports $^{2a)}$ have been published about the reaction of carbonyl compounds with isocyanides, in which the Passerini reaction, $^{2a-c)}$ the preparation of α -acyloxycarboxamide derivatives from isocyanides, aldehydes or ketones and carboxylic acids, is the most useful synthetic method.

In this communication, we wish to report the preparation of α -alkoxycarboxamide derivatives (I) by the equimolar reaction of acetals with isocyanides in the presence of TiCl_{Λ} .

$$R^{1} OR^{3}$$
 + $R^{4}NC \xrightarrow{\text{TiCl}_{4}} \xrightarrow{\text{H}_{2}O} R^{1} OR^{3}$ + $R^{4}NC \xrightarrow{\text{CH}_{2}Cl_{2}} \xrightarrow{\text{CH}_{2}Cl_{2}} (I)$

For example, to a stirred ${\rm CH_2Cl_2}$ solution (4 ml) of cyclohexyl isocyanide (1 mmol) and benzaldehyde dimethyl acetal (1 mmol), ${\rm TiCl_4}$ (1.1 mmol) in ${\rm CH_2Cl_2}$ (0.3 ml) was added at -70°C under argon atmosphere. The reaction mixture was stirred for 3 hr at -70°C and then saturated aqueous sodium bicarbonate was added to the solution. After the usual work-up, N-cyclohexyl- α -methoxyphenylacetamide was obtained in 90% yield. In a similar manner, the reaction of isocyanides with various acetals afforded the corresponding α -alkoxycarboxamide derivatives(I)in good yields as shown in Table I.

The formation of I may be explained by assuming an active complex (II) from acetal and TiCl₄. Then isocyanide attacks the highly electrophilic carbon atom of II to form an imidoyl chloride intermediate (III), which affords I after the subsequent hydrolysis.

$$\begin{array}{c}
R^{1} \xrightarrow{Q_{\bullet}} \text{TiCl}_{4} \xrightarrow{R^{4}NC} & \begin{bmatrix}
R^{1} & Q & \text{TiCl}_{3} \\
R^{2} & Q & \text{Cl} \\
R^{3} & \text{CNR}^{4}
\end{bmatrix} \longrightarrow
\begin{array}{c}
R^{1} & \text{NR}^{4} \xrightarrow{H_{2}O} \\
R^{2} & \text{OR}^{3}
\end{array} (II)$$

$$+ \text{TiCl}_{3}(OR^{3})$$

Table I Yields of α -Alkoxycarboxamide derivatives (I)

R^1	Acetal R ²		Isocyanide R ⁴	Reaction Temp.(°C)	Conditions Time (hr)	Yield(%)
K	K	<u>r</u>		Temp. (C)	Time (III)	11610(8)
С ₆ ^Н 5	Н	CH ₃	C ₆ H ₁₁ b)	-70	3	90
^C 6 ^H 5	Н	$^{\mathrm{C}}2^{\mathrm{H}}5$	^C 6 ^H 11	-40 ∿ -50	3	89
C6H5CH2CH2	Н	C ₂ H ₅	C ₆ H ₁₁	-40 [~] -50	3	82
CH ₃	Н	$C_2^H_5$	C ₆ H ₁₁	-30 ∿ -40	2	90
$C_6H_5CH=CH-\frac{a}{2}$	Н	C ₂ H ₅	C ₆ H ₁₁	-30 ∿ -40	2.5	85
CH ₃ CH=CH- ^{a)}	Н	CH ₃	C ₆ H ₁₁	-40 ∿ -50	3	80
$^{\mathrm{C_6^{H}_5^{CH}_2^{CH}_2}}$	CH ₃	CH ₃	C ₆ H ₁₁	-40 ∿ -50	3	66
$^{\mathrm{C}}6^{\mathrm{H}}5^{\mathrm{CH}}2^{\mathrm{CH}}2$	Н	^С 2 ^Н 5	CH_3	-40 ∿ -50	3	81

a) trans-isomer

b) cyclohexyl

In summary, it is noted that the equimolar reaction of acetals with isocyanides proceeds smoothly at low temperature to afford $\alpha\text{-alkoxycarboxamide}$ derivatives in good yields by the promotion of TiCl_4 . The present result indicates that TiCl_4 is a useful Lewis acid for the activation of acetals toward nucleophiles as isocyanides.

Further development is now under investigation.

References

- * Laboratory of Organic Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152.
- 1) a) T. Mukaiyama and M. Hayashi, Chem. Lett., 15 (1974).
 - b) T. Mukaiyama, T. Izawa, and K. Saigo, ibid., 323 (1974).
 - c) T. Mukaiyama and H. Ishikawa, ibid., 1077 (1974).
 - d) T. Izawa and T. Mukaiyama, ibid., 1189 (1974).
- 2) a) I. Ugi, "Isonitrile Chemistry", Academic Press, New York, N.Y. 1971.
 - b) M. Passerini, Gazz. Chim. Ital., 51, II, 126 (1921).
 - c) U. Fetzer and I. Ugi, Ann. Chem., 659, 184 (1962).

(Received October 25, 1974)